Rate of convergence to the semi-circular law for the Gaussian unitary ensemble
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 2, pp. 381-387
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that the Kolmogorov distance between the expected spectral distribution function of an $n\times n$ Wigner matrix with Gaussian elements and the distribution function of the semicircular law is of order $O(n^{-2/3})$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
independent random variables, spectral distribution
Mots-clés : random matrix.
                    
                  
                
                
                Mots-clés : random matrix.
@article{TVP_2002_47_2_a15,
     author = {F. G\"otze and A. N. Tikhomirov},
     title = {Rate of convergence to the semi-circular law for the {Gaussian} unitary ensemble},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {381--387},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2002_47_2_a15/}
}
                      
                      
                    TY - JOUR AU - F. Götze AU - A. N. Tikhomirov TI - Rate of convergence to the semi-circular law for the Gaussian unitary ensemble JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2002 SP - 381 EP - 387 VL - 47 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2002_47_2_a15/ LA - en ID - TVP_2002_47_2_a15 ER -
F. Götze; A. N. Tikhomirov. Rate of convergence to the semi-circular law for the Gaussian unitary ensemble. Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 2, pp. 381-387. http://geodesic.mathdoc.fr/item/TVP_2002_47_2_a15/
