Rate of convergence to the semi-circular law for the Gaussian unitary ensemble
Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 2, pp. 381-387

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the Kolmogorov distance between the expected spectral distribution function of an $n\times n$ Wigner matrix with Gaussian elements and the distribution function of the semicircular law is of order $O(n^{-2/3})$.
Keywords: independent random variables, spectral distribution
Mots-clés : random matrix.
@article{TVP_2002_47_2_a15,
     author = {F. G\"otze and A. N. Tikhomirov},
     title = {Rate of convergence to the semi-circular law for the {Gaussian} unitary ensemble},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {381--387},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2002_47_2_a15/}
}
TY  - JOUR
AU  - F. Götze
AU  - A. N. Tikhomirov
TI  - Rate of convergence to the semi-circular law for the Gaussian unitary ensemble
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2002
SP  - 381
EP  - 387
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2002_47_2_a15/
LA  - en
ID  - TVP_2002_47_2_a15
ER  - 
%0 Journal Article
%A F. Götze
%A A. N. Tikhomirov
%T Rate of convergence to the semi-circular law for the Gaussian unitary ensemble
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2002
%P 381-387
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2002_47_2_a15/
%G en
%F TVP_2002_47_2_a15
F. Götze; A. N. Tikhomirov. Rate of convergence to the semi-circular law for the Gaussian unitary ensemble. Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 2, pp. 381-387. http://geodesic.mathdoc.fr/item/TVP_2002_47_2_a15/