Limit theorems for certain functionals of unions of random closed sets
Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 1, pp. 130-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X_1,X_2,\dots$ be a sequence of independent identically distributed random closed subsets of a certain locally compact, Hausdorff, and separable space $E$. For each random closed set $Y$ we consider its avoidance functional $Q_Y(F)$ equal to the probability that $Y$ is disjoint with the closed subset $F\subseteq E$. The purpose of this paper is to establish limit theorems for the random variables $Q_Y(X_1\cup\dots\cup X_n)$. The results obtained are then applied for asymptotic analysis of the mean width of convex hulls generated by uniform samples on a multidimensional ball.
Keywords: random sets, unions of closed sets, hitting functionals, extreme values, convex hulls, mean width, perimeter.
@article{TVP_2002_47_1_a8,
     author = {T. Schreiber},
     title = {Limit theorems for certain functionals of unions of random closed sets},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {130--142},
     year = {2002},
     volume = {47},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2002_47_1_a8/}
}
TY  - JOUR
AU  - T. Schreiber
TI  - Limit theorems for certain functionals of unions of random closed sets
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2002
SP  - 130
EP  - 142
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2002_47_1_a8/
LA  - en
ID  - TVP_2002_47_1_a8
ER  - 
%0 Journal Article
%A T. Schreiber
%T Limit theorems for certain functionals of unions of random closed sets
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2002
%P 130-142
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2002_47_1_a8/
%G en
%F TVP_2002_47_1_a8
T. Schreiber. Limit theorems for certain functionals of unions of random closed sets. Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 1, pp. 130-142. http://geodesic.mathdoc.fr/item/TVP_2002_47_1_a8/