Test of symmetry in nonparametric regression
Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 1, pp. 110-130
Voir la notice de l'article provenant de la source Math-Net.Ru
The minimax properties of a test verifying a symmetry of an unknown regression function $f$ from $n$ independent observations are studied. The underlying design is assumed to be random and independent of the noise in observations. The function $f$ belongs to a ball in a Hölder space of regularity $\beta$. The null hypothesis accepts that $f$ is symmetric. We test this hypothesis versus the alternative that the $L_2$ distance from $f$ to the set of symmetric functions exceeds $\sqrt{r_n/2}$. As shown, these hypotheses can be tested consistently when $r_n=O(n^{-4\beta/(4\beta+1)})$.
Keywords:
minimax hypothesis testing, minimax decision, Hölder class.
@article{TVP_2002_47_1_a7,
author = {F. Leblanc and O. V. Lepskiǐ},
title = {Test of symmetry in nonparametric regression},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {110--130},
publisher = {mathdoc},
volume = {47},
number = {1},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2002_47_1_a7/}
}
F. Leblanc; O. V. Lepskiǐ. Test of symmetry in nonparametric regression. Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 1, pp. 110-130. http://geodesic.mathdoc.fr/item/TVP_2002_47_1_a7/