The unimprovability of moment estimates
Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 1, pp. 159-166

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\eta$ be a nonnegative random variable. A. M. Zubkov in [Obozrenie Prikl. Prom. Mat., 1 (1994), pp. 638–666 (in Russian)] obtained upper and low estimates for $P\{\eta>0\}$ in the form of a ratio of determinants formed by moments of $\eta$. The low estimates are always nonnegative and the upper estimates can take values from ${[1,\infty)}$. We show that the low and the upper estimates are unimprovable; i.e., for any random variable $\eta\ge 0$ there exist random variables $\zeta\geq 0$ and $\xi\geq 0$ with the same first moments as $\eta$ have, for which $P\{\zeta>0\}$ coincides with the low estimate and $P\{\xi>0\}$ coincides with the minimum of the upper estimate and 1.
Keywords: unimprovability of estimates, moment problem, moment estimates.
Mots-clés : moments
@article{TVP_2002_47_1_a12,
     author = {A. V. Makrushin},
     title = {The unimprovability of moment estimates},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {159--166},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2002_47_1_a12/}
}
TY  - JOUR
AU  - A. V. Makrushin
TI  - The unimprovability of moment estimates
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2002
SP  - 159
EP  - 166
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2002_47_1_a12/
LA  - ru
ID  - TVP_2002_47_1_a12
ER  - 
%0 Journal Article
%A A. V. Makrushin
%T The unimprovability of moment estimates
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2002
%P 159-166
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2002_47_1_a12/
%G ru
%F TVP_2002_47_1_a12
A. V. Makrushin. The unimprovability of moment estimates. Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 1, pp. 159-166. http://geodesic.mathdoc.fr/item/TVP_2002_47_1_a12/