H\"older estimates for solutions of parabolic SPDEs
Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 1, pp. 152-159

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers second-order stochastic partial differential equations with additive noise given in a bounded domain of $R^n$. We suppose that the coefficients of the noise are $L^p$-functions with sufficiently large $p$. We prove that the solutions are Hölder-continuous functions almost surely (a.s.) and that the respective Hölder norms have finite momenta of any order.
Keywords: stochastic equation, Hölder-continuous function.
@article{TVP_2002_47_1_a11,
     author = {S. B. Kuksin and N. S. Nadirashvili and A. L. Piatnitski},
     title = {H\"older estimates for solutions of parabolic {SPDEs}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {152--159},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2002_47_1_a11/}
}
TY  - JOUR
AU  - S. B. Kuksin
AU  - N. S. Nadirashvili
AU  - A. L. Piatnitski
TI  - H\"older estimates for solutions of parabolic SPDEs
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2002
SP  - 152
EP  - 159
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2002_47_1_a11/
LA  - ru
ID  - TVP_2002_47_1_a11
ER  - 
%0 Journal Article
%A S. B. Kuksin
%A N. S. Nadirashvili
%A A. L. Piatnitski
%T H\"older estimates for solutions of parabolic SPDEs
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2002
%P 152-159
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2002_47_1_a11/
%G ru
%F TVP_2002_47_1_a11
S. B. Kuksin; N. S. Nadirashvili; A. L. Piatnitski. H\"older estimates for solutions of parabolic SPDEs. Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 1, pp. 152-159. http://geodesic.mathdoc.fr/item/TVP_2002_47_1_a11/