Reduced branching processes in random environment: the critical case
Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 1, pp. 21-38
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $Z_n$ be the number of particles at time $n=0,1,2,\dots$ in a branching process in random environment, $Z_0=1$, and let $Z_{m,n}$ be the number of such particles in the process at time $m\in[0,n]$, each of which has a nonempty offspring at time $n$. It is shown that if the offspring generating functions $f_k(s)$ of the particles of the $k$th generation are independent and identically distributed for all $k=0,1,2,\dots$ with $E\log f'_k(1)=0$ and $\sigma^2=E(\log f'_k(1))^2\in(0,\infty)$, then, under certain additional restrictions, the sequence of conditional processes $$ \biggl\{\frac1{\sigma\sqrt{n}}\,\log Z_{[nt],n},\,t\in[0,1]\bigm|Z_n>0\biggr\} $$ converges, as $n\to\infty$, in distribution in Skorokhod topology to the process $\{\inf_{t\le u\le 1}W^+(u),\,t\in[0,1]\}$, where $\{W_+(t),\,t\in [0,1]\}$ is the Brownian meander.
Keywords:
critical branching process in random environment, reduced process, functional limit theorem, random walk.
@article{TVP_2002_47_1_a1,
author = {V. A. Vatutin},
title = {Reduced branching processes in random environment: the critical case},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {21--38},
year = {2002},
volume = {47},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2002_47_1_a1/}
}
V. A. Vatutin. Reduced branching processes in random environment: the critical case. Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 1, pp. 21-38. http://geodesic.mathdoc.fr/item/TVP_2002_47_1_a1/