Reduced branching processes in random environment: the critical case
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 1, pp. 21-38
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $Z_n$ be the number of particles at time $n=0,1,2,\dots$ in a branching process in random environment, $Z_0=1$,  and let $Z_{m,n}$ be the number of such particles in the process at time $m\in[0,n]$, each of which has a nonempty offspring at time $n$. It is shown that if the offspring generating functions $f_k(s)$ of the particles of the $k$th generation are independent and identically distributed for all $k=0,1,2,\dots$ with $E\log f'_k(1)=0$ and $\sigma^2=E(\log f'_k(1))^2\in(0,\infty)$, then, under certain additional restrictions, the sequence of conditional processes
$$
\biggl\{\frac1{\sigma\sqrt{n}}\,\log Z_{[nt],n},\,t\in[0,1]\bigm|Z_n>0\biggr\}
$$
converges, as $n\to\infty$, in distribution in Skorokhod topology to the process $\{\inf_{t\le u\le 1}W^+(u),\,t\in[0,1]\}$, where $\{W_+(t),\,t\in [0,1]\}$ is the Brownian meander.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
critical branching process in random environment, reduced process, functional limit theorem, random walk.
                    
                  
                
                
                @article{TVP_2002_47_1_a1,
     author = {V. A. Vatutin},
     title = {Reduced branching processes in random environment: the critical case},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {21--38},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2002_47_1_a1/}
}
                      
                      
                    V. A. Vatutin. Reduced branching processes in random environment: the critical case. Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 1, pp. 21-38. http://geodesic.mathdoc.fr/item/TVP_2002_47_1_a1/
