Lyapunov-Type Bounds for $U$-Statistics
Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 4, pp. 724-743

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_1,\dots,X_n$ be independent identically distributed random variables. An optimal Lyapunov (or Berry–Esseen) bound is derived for $U$-statistics of degree 2, that is, statistics of the form $\sum_{j$, where $H$ is a measurable, symmetric function such that $\mathbf{E}\,|H(X_1,X_2)|\infty$, assuming that the statistic is nondegenerate.
Keywords: $U$-statistics, Lyapunov-type bound, Berry–Esseen bound, rate of convergence, normal approximations.
@article{TVP_2001_46_4_a6,
     author = {I. B. Alberink and V. Yu. Bentkus},
     title = {Lyapunov-Type {Bounds} for $U${-Statistics}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {724--743},
     publisher = {mathdoc},
     volume = {46},
     number = {4},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2001_46_4_a6/}
}
TY  - JOUR
AU  - I. B. Alberink
AU  - V. Yu. Bentkus
TI  - Lyapunov-Type Bounds for $U$-Statistics
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2001
SP  - 724
EP  - 743
VL  - 46
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2001_46_4_a6/
LA  - en
ID  - TVP_2001_46_4_a6
ER  - 
%0 Journal Article
%A I. B. Alberink
%A V. Yu. Bentkus
%T Lyapunov-Type Bounds for $U$-Statistics
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2001
%P 724-743
%V 46
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2001_46_4_a6/
%G en
%F TVP_2001_46_4_a6
I. B. Alberink; V. Yu. Bentkus. Lyapunov-Type Bounds for $U$-Statistics. Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 4, pp. 724-743. http://geodesic.mathdoc.fr/item/TVP_2001_46_4_a6/