Poisson Measures Quasi-Invariant with Respect to Multiplicative Transformations
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 4, pp. 697-712
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this work the necessary and sufficient conditions are given for the quasi-invariance of the distributions of Poisson measures on $X\times\mathbf{R}^+$ (for arbitrary measurable space $X$) with respect to a large group of the scalings of the component $\mathbf{R}^+$. It is shown that the class of quasi-invariant measures is far from being exhausted by the measures absolutely continuous with respect to the gamma measure considered in [N. Tsilevich and A. Vershik, C. R. Acad. Sci. Paris Ser. I Math., 329 (1999), pp. 163–168] and [N. Tsilevich, A. Vershik, and M. Yor, Prepublication 575, Universites Paris VI  Paris VII, Paris, 2000]. A criterion is given for the absolute continuity of a Poisson measure with respect to another Poisson measure on an arbitrary measurable space.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Poisson measure, spectral measure, gamma measure, Hellinger–Kakutani distance.
Mots-clés : quasi-invariance
                    
                  
                
                
                Mots-clés : quasi-invariance
@article{TVP_2001_46_4_a4,
     author = {M. A. Lifshits and E. Yu. Shmileva},
     title = {Poisson {Measures} {Quasi-Invariant} with {Respect} to {Multiplicative} {Transformations}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {697--712},
     publisher = {mathdoc},
     volume = {46},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2001_46_4_a4/}
}
                      
                      
                    TY - JOUR AU - M. A. Lifshits AU - E. Yu. Shmileva TI - Poisson Measures Quasi-Invariant with Respect to Multiplicative Transformations JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2001 SP - 697 EP - 712 VL - 46 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2001_46_4_a4/ LA - ru ID - TVP_2001_46_4_a4 ER -
M. A. Lifshits; E. Yu. Shmileva. Poisson Measures Quasi-Invariant with Respect to Multiplicative Transformations. Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 4, pp. 697-712. http://geodesic.mathdoc.fr/item/TVP_2001_46_4_a4/
