The Horizon of a Random Cone Field under a Trend: One-Dimensional Distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 4, pp. 792-800
Voir la notice de l'article provenant de la source Math-Net.Ru
The horizon $\xi_T(x)$ of a random field $\zeta(x,y)$ of right circular cones on a plane is investigated. It is assumed that bases of cones are centered at points $s_n=(x_n,y_n)$, $n=1,2,\dots$, on the $(X,Y)$, constituting a Poisson point process $S$ with intensity $\lambda_0>0$ in a strip $\Pi_T=\{(x,y):-\infty$, $0\le y\le T\}$, while altitudes of the cones $h_1,h_2,\dots$ are of the form $h_n=h_n^\ast+f(y_n)$, $n=1,2,\dots$, where $f(y)$ is an increasing continuous function on $[0,\infty)$, $f(0)=0$, and $h_1^*,h_2^*,\dots$ is a sequence of independent identically distributed positive random variables, which are independent of the Poisson process $S$ and have a distribution function $F(h)$ with density $p(h)$.
For some choices of the distribution function $F(h)$ and the trend function $f(y)$, limiting one-dimensional distributions (as $T\to\infty$) of the process $\xi_T(x)$ are obtained.
Keywords:
random field, horizon of random field, random cone field, asymptotic distribution, extreme value theory.
@article{TVP_2001_46_4_a11,
author = {V. P. Nosko},
title = {The {Horizon} of a {Random} {Cone} {Field} under a {Trend:} {One-Dimensional} {Distributions}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {792--800},
publisher = {mathdoc},
volume = {46},
number = {4},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2001_46_4_a11/}
}
TY - JOUR AU - V. P. Nosko TI - The Horizon of a Random Cone Field under a Trend: One-Dimensional Distributions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2001 SP - 792 EP - 800 VL - 46 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2001_46_4_a11/ LA - ru ID - TVP_2001_46_4_a11 ER -
V. P. Nosko. The Horizon of a Random Cone Field under a Trend: One-Dimensional Distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 4, pp. 792-800. http://geodesic.mathdoc.fr/item/TVP_2001_46_4_a11/