$L^p$-Valued Random Measures and Good Extensions of a Stochastic Basis
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 3, pp. 563-568
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, a development of the author's paper [Theory Probab. Appl., 40 (1995), pp. 645–652], we prove the existence of an extension of an $L^p$-valued random measure $\theta$ in the sense of Bichteler and Jacod [Theory and Application of Random Fields, Lecture Notes in Control and Inform. Sci. 49, Springer, Berlin, 1983, pp. 1–18] under a good (with respect to $\theta$) extension of a stochastic basis. Our main result, Theorem 2, was announced in [V. A. Lebedev, Proc. 22nd European Meeting of Statisticians and 7th Vilnius Conference on Probability Theory and Mathematical Statistics: Abstracts of Communications, TEV, Vilnius, 1998, p. 298].
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
good stopping time, $\sigma$-finite $L^p$-valued random measure, good extension of a stochastic basis, extension of a random measure.
                    
                  
                
                
                @article{TVP_2001_46_3_a9,
     author = {V. A. Lebedev},
     title = {$L^p${-Valued} {Random} {Measures} and {Good} {Extensions} of a {Stochastic} {Basis}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {563--568},
     publisher = {mathdoc},
     volume = {46},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2001_46_3_a9/}
}
                      
                      
                    V. A. Lebedev. $L^p$-Valued Random Measures and Good Extensions of a Stochastic Basis. Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 3, pp. 563-568. http://geodesic.mathdoc.fr/item/TVP_2001_46_3_a9/
