Time Change Representation of Stochastic Integrals
Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 3, pp. 579-585
Cet article a éte moissonné depuis la source Math-Net.Ru
By the Dambis–Dubins–Schwarz theorem, any stochastic integral $M:=\int_0^\cdot H_sdW_s$ of Brownian motion can be written as a time-changed Brownian motion, i.e., $M=({\widehat{W}}_{\widehat{T_t}})_{t\in\mathbf{R}_+}$ for some Brownian motion $({\widehat{W}}_\theta)_{\theta\in\mathbf{R}_+}$ and some time change $({\widehat{T_t}})_{t\in\mathbf{R}_+}$. In [J. Jacod and A. Shiryaev, Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin–Heidelberg, 1987] and [O. Kallenberg, Stochastic Process. Appl., 40 (1992), pp. 199–223] it is shown that in this statement Brownian motion can be replaced with (symmetric) $\alpha$-stable Levy motion. Using the cumulant process of a semimartingale, we give new short proofs. Moreover, we show that the statement cannot be extended to any other Levy processes.
Keywords:
stable Levy motions, stochastic integral, time change.
Mots-clés : cumulant process
Mots-clés : cumulant process
@article{TVP_2001_46_3_a13,
author = {J. Kallsen and A. N. Shiryaev},
title = {Time {Change} {Representation} of {Stochastic} {Integrals}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {579--585},
year = {2001},
volume = {46},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2001_46_3_a13/}
}
J. Kallsen; A. N. Shiryaev. Time Change Representation of Stochastic Integrals. Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 3, pp. 579-585. http://geodesic.mathdoc.fr/item/TVP_2001_46_3_a13/