Time Change Representation of Stochastic Integrals
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 3, pp. 579-585
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			By the Dambis–Dubins–Schwarz theorem, any stochastic integral $M:=\int_0^\cdot H_sdW_s$ of Brownian motion can be written as a time-changed Brownian motion, i.e., $M=({\widehat{W}}_{\widehat{T_t}})_{t\in\mathbf{R}_+}$ for some Brownian motion $({\widehat{W}}_\theta)_{\theta\in\mathbf{R}_+}$ and some time change $({\widehat{T_t}})_{t\in\mathbf{R}_+}$. In [J. Jacod and A. Shiryaev, Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin–Heidelberg, 1987] and [O. Kallenberg, Stochastic Process. Appl., 40 (1992), pp. 199–223] it is shown that in this statement Brownian motion can be replaced with (symmetric) $\alpha$-stable Levy motion. Using the cumulant process of a semimartingale, we give new short proofs. Moreover, we show that the statement cannot be extended to any other Levy processes.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
stable Levy motions, stochastic integral, time change.
Mots-clés : cumulant process
                    
                  
                
                
                Mots-clés : cumulant process
@article{TVP_2001_46_3_a13,
     author = {J. Kallsen and A. N. Shiryaev},
     title = {Time {Change} {Representation} of {Stochastic} {Integrals}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {579--585},
     publisher = {mathdoc},
     volume = {46},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2001_46_3_a13/}
}
                      
                      
                    J. Kallsen; A. N. Shiryaev. Time Change Representation of Stochastic Integrals. Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 3, pp. 579-585. http://geodesic.mathdoc.fr/item/TVP_2001_46_3_a13/
