A Functional Central Limit Theorem for Transformed Solutions of the Multidimensional Burgers Equation with Random Initial Data
Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 3, pp. 427-448
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper states the convergence in distribution in some functional space to the Gaussian field with explicitly calculated parameters for transformed solutions of the multidimensional Burgers equation with initial conditions given by the associated random measure. Auxiliary moment and maximal inequalities obtained in the paper are of interest in themselves.
Keywords:
nonlinear diffusion, associated random variables, moment inequalities, maximal inequalities.
@article{TVP_2001_46_3_a1,
author = {Yu. Yu. Bakhtin},
title = {A {Functional} {Central} {Limit} {Theorem} for {Transformed} {Solutions} of the {Multidimensional} {Burgers} {Equation} with {Random} {Initial} {Data}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {427--448},
year = {2001},
volume = {46},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2001_46_3_a1/}
}
TY - JOUR AU - Yu. Yu. Bakhtin TI - A Functional Central Limit Theorem for Transformed Solutions of the Multidimensional Burgers Equation with Random Initial Data JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2001 SP - 427 EP - 448 VL - 46 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2001_46_3_a1/ LA - ru ID - TVP_2001_46_3_a1 ER -
%0 Journal Article %A Yu. Yu. Bakhtin %T A Functional Central Limit Theorem for Transformed Solutions of the Multidimensional Burgers Equation with Random Initial Data %J Teoriâ veroâtnostej i ee primeneniâ %D 2001 %P 427-448 %V 46 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_2001_46_3_a1/ %G ru %F TVP_2001_46_3_a1
Yu. Yu. Bakhtin. A Functional Central Limit Theorem for Transformed Solutions of the Multidimensional Burgers Equation with Random Initial Data. Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 3, pp. 427-448. http://geodesic.mathdoc.fr/item/TVP_2001_46_3_a1/