On Estimating Multimodal Spectra of Time Series
Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 3, pp. 417-426
Cet article a éte moissonné depuis la source Math-Net.Ru
The estimates of multimodal spectra of random sequences are considered on an example of dendrochronological series (DCS). These series are representable as the sums of the tapered component, the spectrum of which then turns out to be proportional to the power of frequency with exponent $-\frac13$ and with several weakly manifested frequency maxima overlapping it. One can achieve a better manifestation of these maxima by considering the effects of moving tapering in time with various tapering windows and by constructing the spectra of the tapered series. In this way 7 maxima are detected with periods of about 2.7, 4.7, 23.7, 60, 120, 180, and 745 years.
Keywords:
stationary random sequences, dendrochronological series.
Mots-clés : spectra
Mots-clés : spectra
@article{TVP_2001_46_3_a0,
author = {N. V. Vakulenko and A. S. Monin},
title = {On {Estimating} {Multimodal} {Spectra} of {Time} {Series}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {417--426},
year = {2001},
volume = {46},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2001_46_3_a0/}
}
N. V. Vakulenko; A. S. Monin. On Estimating Multimodal Spectra of Time Series. Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 3, pp. 417-426. http://geodesic.mathdoc.fr/item/TVP_2001_46_3_a0/