Expectation of the Ratio of the Sum of Squares to the Square of the Sum: Exact and Asymptotic Results
Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 2, pp. 297-310
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $X_i$, $i=1,\dots,n$, be a sequence of positive independent identically distributed random variables. Define $$ R_n:=\mathbf{E}\frac{X_1^2+X_2^2+\dots+X_n^2}{(X_1+X_2+\dots+X_n)^2}. $$ Let $\varphi(s)=\mathbf{E}e^{-sX}$. We give an explicit representation of $R_n $ in terms of $\varphi$, and with the help of the Karamata theory of functions of regular variation, we study the asymptotic behavior of $R_n$ for large $n$.
Keywords:
Karamata theory, functions of regular variation, domain of attraction of a stable law, Doeblin's universal law.
@article{TVP_2001_46_2_a4,
author = {A. Fuchs and A. Joffe and J. L. Teugels},
title = {Expectation of the {Ratio} of the {Sum} of {Squares} to the {Square} of the {Sum:} {Exact} and {Asymptotic} {Results}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {297--310},
year = {2001},
volume = {46},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2001_46_2_a4/}
}
TY - JOUR AU - A. Fuchs AU - A. Joffe AU - J. L. Teugels TI - Expectation of the Ratio of the Sum of Squares to the Square of the Sum: Exact and Asymptotic Results JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2001 SP - 297 EP - 310 VL - 46 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2001_46_2_a4/ LA - ru ID - TVP_2001_46_2_a4 ER -
%0 Journal Article %A A. Fuchs %A A. Joffe %A J. L. Teugels %T Expectation of the Ratio of the Sum of Squares to the Square of the Sum: Exact and Asymptotic Results %J Teoriâ veroâtnostej i ee primeneniâ %D 2001 %P 297-310 %V 46 %N 2 %U http://geodesic.mathdoc.fr/item/TVP_2001_46_2_a4/ %G ru %F TVP_2001_46_2_a4
A. Fuchs; A. Joffe; J. L. Teugels. Expectation of the Ratio of the Sum of Squares to the Square of the Sum: Exact and Asymptotic Results. Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 2, pp. 297-310. http://geodesic.mathdoc.fr/item/TVP_2001_46_2_a4/