On the Law of the Iterated Logarithm for Operator Normed Sums of Random Vectors
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 2, pp. 381-383
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper proves the law of the iterated logarithm for sums of random vectors in $\mathbf{R}^k$ normed by linear operators of general type. We suppose that the sequence of the random vectors satisfies Strassen's invariance principle.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
law of the iterated logarithm, almost sure invariance principle, operator normed sums of random vectors.
                    
                  
                
                
                @article{TVP_2001_46_2_a12,
     author = {V. A. Koval'},
     title = {On the {Law} of the {Iterated} {Logarithm} for {Operator} {Normed} {Sums} of {Random} {Vectors}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {381--383},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2001_46_2_a12/}
}
                      
                      
                    TY - JOUR AU - V. A. Koval' TI - On the Law of the Iterated Logarithm for Operator Normed Sums of Random Vectors JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2001 SP - 381 EP - 383 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2001_46_2_a12/ LA - ru ID - TVP_2001_46_2_a12 ER -
V. A. Koval'. On the Law of the Iterated Logarithm for Operator Normed Sums of Random Vectors. Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 2, pp. 381-383. http://geodesic.mathdoc.fr/item/TVP_2001_46_2_a12/
