On Some Estimation Problems with Information Constraints
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 2, pp. 233-246
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper is the second part of [M. V. Burnashev, Sh. Amari, and T. S. Han, Theory Probab. Appl., 45 (2000), pp. 558–568]. A parameter estimation problem is considered where some part of the data cannot be directly observed. Our helper observes those data and can send us some limited amount of information about them. What kind of information allows us to get a minimal mean-square error in a parameter estimate? In particular, what is the minimal information required to get the same mean-square error as when we directly observe all the data? Some upper bounds for that minimal amount of information and some related results are obtained.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
parameter estimate, mean-square error, Fisher information, rate of transmission, critical rate.
                    
                  
                
                
                @article{TVP_2001_46_2_a1,
     author = {M. V. Burnashev and T. S. Han and Shun-ichi Amari},
     title = {On {Some} {Estimation} {Problems} with {Information} {Constraints}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {233--246},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2001_46_2_a1/}
}
                      
                      
                    TY - JOUR AU - M. V. Burnashev AU - T. S. Han AU - Shun-ichi Amari TI - On Some Estimation Problems with Information Constraints JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2001 SP - 233 EP - 246 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2001_46_2_a1/ LA - ru ID - TVP_2001_46_2_a1 ER -
M. V. Burnashev; T. S. Han; Shun-ichi Amari. On Some Estimation Problems with Information Constraints. Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 2, pp. 233-246. http://geodesic.mathdoc.fr/item/TVP_2001_46_2_a1/
