The Anistropic Moduli of Continuity of Random Fields
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 1, pp. 154-160
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper the anisotropic moduli of continuity of random fields, which satisfied the Cramér condition, are calculated. The exactness of obtained results applied for the derivation of the central limit theorem in Hölder spaces is shown in examples.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
random field, Banach spaces for random variables, metrical entropy, exponential estimator, anisotropic modulus of continuity.
                    
                  
                
                
                @article{TVP_2001_46_1_a9,
     author = {E. I. Ostrovskii},
     title = {The {Anistropic} {Moduli} of {Continuity} of {Random} {Fields}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {154--160},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2001_46_1_a9/}
}
                      
                      
                    E. I. Ostrovskii. The Anistropic Moduli of Continuity of Random Fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 1, pp. 154-160. http://geodesic.mathdoc.fr/item/TVP_2001_46_1_a9/
