The Exact Constant in the Rosenthal Inequality for Random Variables with Mean Zero
Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 1, pp. 134-138
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\xi_1, \ldots, \xi_n$ be independent random variables with $\mathbf{E}\xi_i=0,$ $\mathbf{E}|\xi_i|^t<\infty$, $t>2$, $i=1,\ldots, n,$ and let $S_n=\sum_{i=1}^n \xi_i.$ In the present paper we prove that the exact constant ${\overline C}(2m)$ in the Rosenthal inequality $$ \mathbf{E}|S_n|^t\le C(t) \max \Bigg(\sum_{i=1}^n\mathbf{E}|\xi_i|^t,\ \Bigg(\sum_{i=1}^n \mathbf{E}\xi_i^2\Bigg)^{t/2}\Bigg) $$ for $t=2m,$ $m\in \mathbf{N},$ is given by $$ \overline C(2m)=(2m)! \sum_{j=1}^{2m} \sum_{r=1}^j \sum \prod_{k=1}^r \frac {(m_k!)^{-j_k}} {j_k!}, $$ where the inner sum is taken over all natural $m_1 > m_2 > \cdots > m_r > 1$ and $j_1, \ldots, j_r$ satisfying the conditions $m_1j_1+\cdots+m_rj_r=2m$ and $j_1+\cdots+j_r=j$. Moreover $$ \overline C(2m)=\mathbf{E}(\theta-1)^{2m}, $$ where $\theta $ is a Poisson random variable with parameter 1.
Keywords:
Rosenthal inequality, zero mean random variables
Mots-clés : moment, Poisson random variable.
Mots-clés : moment, Poisson random variable.
@article{TVP_2001_46_1_a6,
author = {R. Ibragimov and Sh. Sharahmetov},
title = {The {Exact} {Constant} in the {Rosenthal} {Inequality} for {Random} {Variables} with {Mean} {Zero}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {134--138},
year = {2001},
volume = {46},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2001_46_1_a6/}
}
TY - JOUR AU - R. Ibragimov AU - Sh. Sharahmetov TI - The Exact Constant in the Rosenthal Inequality for Random Variables with Mean Zero JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2001 SP - 134 EP - 138 VL - 46 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2001_46_1_a6/ LA - ru ID - TVP_2001_46_1_a6 ER -
R. Ibragimov; Sh. Sharahmetov. The Exact Constant in the Rosenthal Inequality for Random Variables with Mean Zero. Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 1, pp. 134-138. http://geodesic.mathdoc.fr/item/TVP_2001_46_1_a6/