Lower Bounds on Large Deviation Probabilities for Sums of Independent Random Variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 1, pp. 50-73
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper derives the lower estimates for large deviation probabilities for sums of independent random variables. The area of application of these estimates is described in terms of a Lyapunov ratio. The obtained estimates are compared with lower estimates obtained by Kolmogorov, Feller, Lenart, and Arkhangelskii.
Keywords:
large deviations, method of conjugate distributions, independent random variables, Kolmogorov inequality, Berry–Esseen estimators, convolution of distribution functions, Bernstein condition, characteristic function.
Mots-clés : ratio
Mots-clés : ratio
@article{TVP_2001_46_1_a2,
author = {S. V. Nagaev},
title = {Lower {Bounds} on {Large} {Deviation} {Probabilities} for {Sums} of {Independent} {Random} {Variables}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {50--73},
year = {2001},
volume = {46},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2001_46_1_a2/}
}
S. V. Nagaev. Lower Bounds on Large Deviation Probabilities for Sums of Independent Random Variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 1, pp. 50-73. http://geodesic.mathdoc.fr/item/TVP_2001_46_1_a2/