Lower Bounds on Large Deviation Probabilities for Sums of Independent Random Variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 1, pp. 50-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper derives the lower estimates for large deviation probabilities for sums of independent random variables. The area of application of these estimates is described in terms of a Lyapunov ratio. The obtained estimates are compared with lower estimates obtained by Kolmogorov, Feller, Lenart, and Arkhangelskii.
Keywords: large deviations, method of conjugate distributions, independent random variables, Kolmogorov inequality, Berry–Esseen estimators, convolution of distribution functions, Bernstein condition, characteristic function.
Mots-clés : ratio
@article{TVP_2001_46_1_a2,
     author = {S. V. Nagaev},
     title = {Lower {Bounds} on {Large} {Deviation} {Probabilities} for {Sums} of {Independent} {Random} {Variables}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {50--73},
     year = {2001},
     volume = {46},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2001_46_1_a2/}
}
TY  - JOUR
AU  - S. V. Nagaev
TI  - Lower Bounds on Large Deviation Probabilities for Sums of Independent Random Variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2001
SP  - 50
EP  - 73
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2001_46_1_a2/
LA  - ru
ID  - TVP_2001_46_1_a2
ER  - 
%0 Journal Article
%A S. V. Nagaev
%T Lower Bounds on Large Deviation Probabilities for Sums of Independent Random Variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2001
%P 50-73
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2001_46_1_a2/
%G ru
%F TVP_2001_46_1_a2
S. V. Nagaev. Lower Bounds on Large Deviation Probabilities for Sums of Independent Random Variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 1, pp. 50-73. http://geodesic.mathdoc.fr/item/TVP_2001_46_1_a2/