On $L_2$ Efficiency of an Empiric Distribution for Ergodic Diffusion Processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 1, pp. 164-169
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem of the estimation of a stationary distribution function of an ergodic diffusion process with unknown trend coefficient is considered. An elementary proof of the lower minimax bound with integrated mean square error is proposed and it is shown that the empiric distribution attains this bound.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
lower bound, nonparametric estimation, asymptotic efficiency.
Mots-clés : ergodic diffusion process
                    
                  
                
                
                Mots-clés : ergodic diffusion process
@article{TVP_2001_46_1_a11,
     author = {Yu. A. Kutoyants and I. Negri},
     title = {On $L_2$ {Efficiency} of an {Empiric} {Distribution} for {Ergodic} {Diffusion} {Processes}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {164--169},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2001_46_1_a11/}
}
                      
                      
                    TY - JOUR AU - Yu. A. Kutoyants AU - I. Negri TI - On $L_2$ Efficiency of an Empiric Distribution for Ergodic Diffusion Processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2001 SP - 164 EP - 169 VL - 46 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2001_46_1_a11/ LA - en ID - TVP_2001_46_1_a11 ER -
Yu. A. Kutoyants; I. Negri. On $L_2$ Efficiency of an Empiric Distribution for Ergodic Diffusion Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 1, pp. 164-169. http://geodesic.mathdoc.fr/item/TVP_2001_46_1_a11/
