Families of Consistent Probability Measures
Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 1, pp. 160-163

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the following problem. Suppose that $(P_t)_{t\ge 0}$ is a family of consistent probability measures defined on a filtration $(\mathscr{F}_t)_{t\ge 0}$. Does there exist a measure $P$ on the $\sigma$-field $\vee_{t\geq 0}\mathscr{F}_t$ such that $P\,|\,\mathscr{F}_t=P_t$? The answer is positive for the spaces $C(\mathbf{R}_+,\mathbf{R}^d)$ and $D(\mathbf{R}_+,\mathbf{R}^d)$ endowed with the natural filtration. We prove this statement using a simple method based on the Prokhorov criterion of weak compactness.
Keywords: consistent probability measures, extension of measures, Skorokhod space, Prokhorov criterion.
@article{TVP_2001_46_1_a10,
     author = {A. S. Cherny},
     title = {Families of {Consistent} {Probability} {Measures}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {160--163},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2001_46_1_a10/}
}
TY  - JOUR
AU  - A. S. Cherny
TI  - Families of Consistent Probability Measures
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2001
SP  - 160
EP  - 163
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2001_46_1_a10/
LA  - ru
ID  - TVP_2001_46_1_a10
ER  - 
%0 Journal Article
%A A. S. Cherny
%T Families of Consistent Probability Measures
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2001
%P 160-163
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2001_46_1_a10/
%G ru
%F TVP_2001_46_1_a10
A. S. Cherny. Families of Consistent Probability Measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 1, pp. 160-163. http://geodesic.mathdoc.fr/item/TVP_2001_46_1_a10/