Families of Consistent Probability Measures
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 1, pp. 160-163
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper deals with the following problem. Suppose that $(P_t)_{t\ge 0}$ is a family of consistent probability measures defined on a filtration $(\mathscr{F}_t)_{t\ge 0}$. Does there exist a measure $P$ on the $\sigma$-field $\vee_{t\geq 0}\mathscr{F}_t$ such that $P\,|\,\mathscr{F}_t=P_t$? The answer is positive for the spaces $C(\mathbf{R}_+,\mathbf{R}^d)$ and $D(\mathbf{R}_+,\mathbf{R}^d)$ endowed with the natural filtration. We prove this statement using a simple method based on the Prokhorov criterion of weak compactness.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
consistent probability measures, extension of measures, Skorokhod space, Prokhorov criterion.
                    
                  
                
                
                @article{TVP_2001_46_1_a10,
     author = {A. S. Cherny},
     title = {Families of {Consistent} {Probability} {Measures}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {160--163},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2001_46_1_a10/}
}
                      
                      
                    A. S. Cherny. Families of Consistent Probability Measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 1, pp. 160-163. http://geodesic.mathdoc.fr/item/TVP_2001_46_1_a10/
