Rough boundary trace for solutions of $Lu=\psi(u)$
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 4, pp. 740-744
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $L$ be a second order elliptic differential operator in $\mathbf{R}^d$ and let $E$ be a bounded domain in $\mathbf{R}^d$ with smooth boundary $\partial E$. A pair $(\Gamma,\nu)$ is associated with every positive solution of a semilinear differential equation $Lu=\psi(u)$ in $E$, where $\Gamma$ is a closed subset of $\partial E$ and $\nu$ is a Radon measure on $O=\partial E\setminus \Gamma$. We call this pair the rough trace of $u$ on $\partial E$. (In [E. B. Dynkin and S. E. Kuznetsov, Comm. Pure Appl. Math., 51 (1998), pp. 897–936], we introduced a fine trace allowing us to distinguish solutions with identical rough traces.)
The case of $\psi(u)=u^\alpha$ with $\alpha>1$ was investigated using various methods by Le Gall, Dynkin, and Kuznetsov and by Marcus and Véron. In this paper we cover a wide class of functions $\psi$ and simplify substantially the proofs contained in our earlier papers.
Keywords:
boundary trace of a solution, moderate solutions, sweeping, removable and thin boundary sets, stochastic boundary value
Mots-clés : diffusion, range of superdiffusion.
Mots-clés : diffusion, range of superdiffusion.
@article{TVP_2000_45_4_a6,
author = {E. B. Dynkin and S. E. Kuznetsov},
title = {Rough boundary trace for solutions of $Lu=\psi(u)$},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {740--744},
publisher = {mathdoc},
volume = {45},
number = {4},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_4_a6/}
}
E. B. Dynkin; S. E. Kuznetsov. Rough boundary trace for solutions of $Lu=\psi(u)$. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 4, pp. 740-744. http://geodesic.mathdoc.fr/item/TVP_2000_45_4_a6/