Rough boundary trace for solutions of $Lu=\psi(u)$
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 4, pp. 740-744

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L$ be a second order elliptic differential operator in $\mathbf{R}^d$ and let $E$ be a bounded domain in $\mathbf{R}^d$ with smooth boundary $\partial E$. A pair $(\Gamma,\nu)$ is associated with every positive solution of a semilinear differential equation $Lu=\psi(u)$ in $E$, where $\Gamma$ is a closed subset of $\partial E$ and $\nu$ is a Radon measure on $O=\partial E\setminus \Gamma$. We call this pair the rough trace of $u$ on $\partial E$. (In [E. B. Dynkin and S. E. Kuznetsov, Comm. Pure Appl. Math., 51 (1998), pp. 897–936], we introduced a fine trace allowing us to distinguish solutions with identical rough traces.) The case of $\psi(u)=u^\alpha$ with $\alpha>1$ was investigated using various methods by Le Gall, Dynkin, and Kuznetsov and by Marcus and Véron. In this paper we cover a wide class of functions $\psi$ and simplify substantially the proofs contained in our earlier papers.
Keywords: boundary trace of a solution, moderate solutions, sweeping, removable and thin boundary sets, stochastic boundary value
Mots-clés : diffusion, range of superdiffusion.
@article{TVP_2000_45_4_a6,
     author = {E. B. Dynkin and S. E. Kuznetsov},
     title = {Rough boundary trace for solutions of $Lu=\psi(u)$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {740--744},
     publisher = {mathdoc},
     volume = {45},
     number = {4},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_4_a6/}
}
TY  - JOUR
AU  - E. B. Dynkin
AU  - S. E. Kuznetsov
TI  - Rough boundary trace for solutions of $Lu=\psi(u)$
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2000
SP  - 740
EP  - 744
VL  - 45
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2000_45_4_a6/
LA  - en
ID  - TVP_2000_45_4_a6
ER  - 
%0 Journal Article
%A E. B. Dynkin
%A S. E. Kuznetsov
%T Rough boundary trace for solutions of $Lu=\psi(u)$
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2000
%P 740-744
%V 45
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2000_45_4_a6/
%G en
%F TVP_2000_45_4_a6
E. B. Dynkin; S. E. Kuznetsov. Rough boundary trace for solutions of $Lu=\psi(u)$. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 4, pp. 740-744. http://geodesic.mathdoc.fr/item/TVP_2000_45_4_a6/