Hydrodynamic limit for a nongradient interacting particle system with stochastic reservoirs
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 4, pp. 694-717
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a nongradient interacting particle system whose macroscopic behavior is described by a $d$-dimensional nonlinear parabolic equation on a square with boundary conditions. Assuming that the diffusion coefficient is Lipschitz, we prove that the rescaled density field converges to a unique weak solution of the parabolic equation.
Keywords:
interacting particle system, boundary value parabolic equations.
Mots-clés : hydrodynamic limit
Mots-clés : hydrodynamic limit
@article{TVP_2000_45_4_a4,
author = {C. Landim and M. Mourragui and S. Sellami},
title = {Hydrodynamic limit for a nongradient interacting particle system with stochastic reservoirs},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {694--717},
year = {2000},
volume = {45},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_4_a4/}
}
TY - JOUR AU - C. Landim AU - M. Mourragui AU - S. Sellami TI - Hydrodynamic limit for a nongradient interacting particle system with stochastic reservoirs JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2000 SP - 694 EP - 717 VL - 45 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2000_45_4_a4/ LA - en ID - TVP_2000_45_4_a4 ER -
%0 Journal Article %A C. Landim %A M. Mourragui %A S. Sellami %T Hydrodynamic limit for a nongradient interacting particle system with stochastic reservoirs %J Teoriâ veroâtnostej i ee primeneniâ %D 2000 %P 694-717 %V 45 %N 4 %U http://geodesic.mathdoc.fr/item/TVP_2000_45_4_a4/ %G en %F TVP_2000_45_4_a4
C. Landim; M. Mourragui; S. Sellami. Hydrodynamic limit for a nongradient interacting particle system with stochastic reservoirs. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 4, pp. 694-717. http://geodesic.mathdoc.fr/item/TVP_2000_45_4_a4/