Large deviations for partial sums $U$-processes in dependent cases
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 4, pp. 670-693 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The large deviation principle (LDP) is known to hold for partial sums $U$-processes of real-valued kernel functions of independent identically distributed random variables $X_i$. We prove an LDP when the $X_i$ are independent but not identically distributed or fulfill some Markov dependence or mixing conditions. Moreover, we give a general condition which suffices for the LDP to carry over from the partial sums empirical processes LDP to the partial sums $U$-processes LDP for kernel functions satisfying an appropriate exponential tail condition.
Keywords: large deviations, partial sums, $U$-process, strong mixing.
Mots-clés : Markov chains, hypermixing
@article{TVP_2000_45_4_a3,
     author = {P. Eichelsbacher},
     title = {Large deviations for partial sums $U$-processes in dependent cases},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {670--693},
     year = {2000},
     volume = {45},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_4_a3/}
}
TY  - JOUR
AU  - P. Eichelsbacher
TI  - Large deviations for partial sums $U$-processes in dependent cases
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2000
SP  - 670
EP  - 693
VL  - 45
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2000_45_4_a3/
LA  - en
ID  - TVP_2000_45_4_a3
ER  - 
%0 Journal Article
%A P. Eichelsbacher
%T Large deviations for partial sums $U$-processes in dependent cases
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2000
%P 670-693
%V 45
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2000_45_4_a3/
%G en
%F TVP_2000_45_4_a3
P. Eichelsbacher. Large deviations for partial sums $U$-processes in dependent cases. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 4, pp. 670-693. http://geodesic.mathdoc.fr/item/TVP_2000_45_4_a3/