A note on optimal stopping of regular diffusions under random discounting
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 4, pp. 657-669
Cet article a éte moissonné depuis la source Math-Net.Ru
Let X be a one-dimensional regular diffusion, $A$ a positive continuous additive functional of $X$, and h a measurable real-valued function. A method is proposed to determine a stopping rule $T^*$ that maximizes $\mathbf{E}\{e^{-A_T} h(X_T) 1_{\{T < \infty\}}\}$ over all stopping times $T$ of $X$. Several examples are discussed.
Keywords:
generalized parking problems, optimal stopping, random regret.
Mots-clés : diffusions
Mots-clés : diffusions
@article{TVP_2000_45_4_a2,
author = {M. Beibel and H. R. Lerche},
title = {A~note on optimal stopping of regular diffusions under random discounting},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {657--669},
year = {2000},
volume = {45},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_4_a2/}
}
M. Beibel; H. R. Lerche. A note on optimal stopping of regular diffusions under random discounting. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 4, pp. 657-669. http://geodesic.mathdoc.fr/item/TVP_2000_45_4_a2/