A~note on optimal stopping of regular diffusions under random discounting
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 4, pp. 657-669
Voir la notice de l'article provenant de la source Math-Net.Ru
Let X be a one-dimensional regular diffusion, $A$ a positive continuous additive functional of $X$, and h a measurable real-valued function. A method is proposed to determine a stopping rule $T^*$ that maximizes $\mathbf{E}\{e^{-A_T} h(X_T) 1_{\{T \infty\}}\}$ over all stopping times $T$ of $X$. Several examples are discussed.
Keywords:
generalized parking problems, optimal stopping, random regret.
Mots-clés : diffusions
Mots-clés : diffusions
@article{TVP_2000_45_4_a2,
author = {M. Beibel and H. R. Lerche},
title = {A~note on optimal stopping of regular diffusions under random discounting},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {657--669},
publisher = {mathdoc},
volume = {45},
number = {4},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_4_a2/}
}
TY - JOUR AU - M. Beibel AU - H. R. Lerche TI - A~note on optimal stopping of regular diffusions under random discounting JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2000 SP - 657 EP - 669 VL - 45 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2000_45_4_a2/ LA - en ID - TVP_2000_45_4_a2 ER -
M. Beibel; H. R. Lerche. A~note on optimal stopping of regular diffusions under random discounting. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 4, pp. 657-669. http://geodesic.mathdoc.fr/item/TVP_2000_45_4_a2/