On the automorphically stable distributions on Abelian groups
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 3, pp. 584-589

Voir la notice de l'article provenant de la source Math-Net.Ru

On a local compact Abelian group $X$, we consider {$G$-auto}-morphically stable distributions, where $G$ is a subgroup of a group $Aut(X)$. It is shown that if $\mu$ is $G$-automorphically stable, then 1) $\mu$ is either absolutely continuous, singular, or discrete with respect to the Haar measure of the group $X$; 2) if $\mu$ is discrete, then $\mu$ is a shift of the Haar distribution of a finite $G$-characteristic subgroup of the group $X$; 3) if $G$ consists of elements of finite order, then $\mu$ is a shift of the Haar distribution of a compact $G$-automorphically stable subgroup of the group $X$.
Keywords: $G$-automorphically stable distributions and subgroups, $G$-characteristic subgroup, Haar distribution.
@article{TVP_2000_45_3_a9,
     author = {S. S. Gabrielyan},
     title = {On the automorphically stable distributions on {Abelian} groups},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {584--589},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a9/}
}
TY  - JOUR
AU  - S. S. Gabrielyan
TI  - On the automorphically stable distributions on Abelian groups
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2000
SP  - 584
EP  - 589
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a9/
LA  - ru
ID  - TVP_2000_45_3_a9
ER  - 
%0 Journal Article
%A S. S. Gabrielyan
%T On the automorphically stable distributions on Abelian groups
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2000
%P 584-589
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a9/
%G ru
%F TVP_2000_45_3_a9
S. S. Gabrielyan. On the automorphically stable distributions on Abelian groups. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 3, pp. 584-589. http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a9/