A general approach to the strong laws of large numbers
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 3, pp. 568-583

Voir la notice de l'article provenant de la source Math-Net.Ru

A general method for obtaining the strong law of large numbers for sequences of random variables is considered. Some applications for dependent summands are given.
Keywords: strong law of large numbers, Hájek–Rényi maximal inequality, $\rho$-mixing, logarithmically weighted sums.
@article{TVP_2000_45_3_a8,
     author = {I. Fazekas and O. Klesov},
     title = {A general approach to the strong laws of large numbers},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {568--583},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a8/}
}
TY  - JOUR
AU  - I. Fazekas
AU  - O. Klesov
TI  - A general approach to the strong laws of large numbers
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2000
SP  - 568
EP  - 583
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a8/
LA  - en
ID  - TVP_2000_45_3_a8
ER  - 
%0 Journal Article
%A I. Fazekas
%A O. Klesov
%T A general approach to the strong laws of large numbers
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2000
%P 568-583
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a8/
%G en
%F TVP_2000_45_3_a8
I. Fazekas; O. Klesov. A general approach to the strong laws of large numbers. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 3, pp. 568-583. http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a8/