Exact maximal inequalities for exchangeable systems of random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 3, pp. 555-567
Voir la notice de l'article provenant de la source Math-Net.Ru
Given an exchangeable finite system of Banachspace valued random variables $(\xi_1,\ldots,\xi_n)$ with $\sum_1^n\xi_i=0$, we prove that $\mathbf{E}\Phi(\max_{k\le n}\|\xi_1+\cdots+\xi_k\|)$ is equivalent to $\mathbf{E}\Phi(\|\sum_1^n\xi_ir_i\|)$ for any increasing and convex $\Phi\colon\mathbf{R}^+\to\mathbf{R}^+$, $\Phi(0)=0$, where $(r_1,\ldots,r_n)$ is a system of Rademacher random variables independent of $(\xi_1,\ldots,\xi_n)$. We also establish the equivalence of the tails of the related distributions. The results seem to be new also for scalar random variables. As corollaries we find best estimations for the average of $\max_{k\le n}\|a_{\pi(1)}+\cdots+a_{\pi(k)}\|$ with respect to permutations $\pi$ of nonrandom vectors $a_1,\ldots,a_n$ from a normed space.
Keywords:
exchangeable random variables, Banach space, maximal inequality
Mots-clés : permutations.
Mots-clés : permutations.
@article{TVP_2000_45_3_a7,
author = {S. Chobanyan and H. Salehi},
title = {Exact maximal inequalities for exchangeable systems of random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {555--567},
publisher = {mathdoc},
volume = {45},
number = {3},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a7/}
}
TY - JOUR AU - S. Chobanyan AU - H. Salehi TI - Exact maximal inequalities for exchangeable systems of random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2000 SP - 555 EP - 567 VL - 45 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a7/ LA - en ID - TVP_2000_45_3_a7 ER -
S. Chobanyan; H. Salehi. Exact maximal inequalities for exchangeable systems of random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 3, pp. 555-567. http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a7/