A maximal inequality for real numbers with application to exchangeable random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 3, pp. 615-621

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $x=(x_1,\ldots, x_n)$ be a sequence of real numbers with ${\sum_{i=1}^n} x_i=0$, and let $\Theta=\{\theta=(\theta_1,\ldots,\theta_n):\theta_i=\pm 1\}$. We will prove that for every $\theta\in\Theta$ and $t\ge 0$ the following holds: $$ \frac{1}{2}\mathbf{P}\{|x_\pi|\ge 38t\}\le \mathbf{P}\{|\theta\cdot x_\pi|\ge t\}\le \mathbf{P}\biggl\{|x_\pi|\ge \frac{t}{2}\biggr\}, $$ where $\mathbf{P}$ stands for the uniform probability on a group $\{\pi\}$ of all permutations of $\{1,\ldots, n\}$, $x_\pi=(x_{\pi(1)},\ldots, x_{\pi(n)})$, $\theta\cdot x_\pi=(\theta_1x_{\pi(1)},\ldots, \theta_nx_{\pi(n)})$, and $|y|=\max_{1\le k\le n}\{|\sum_{i=1}^k y_i|\}$ for every $y=(y_1,\ldots, y_n)\in\mathbf{R}^n$. Our proof is elementary and self-contained. As a corollary of our result we will prove, in the case of real numbers, the following recent result of Pruss [Proc. Amer. Math. Soc., 126 (1998), pp. 1811–1819]: Let $X=(X_1,\ldots, X_{2n})$ be an exchangeable sequence of $2n$ real valued random variables; then for every $t >0$ we have $$ {\mathbf P}\Bigg\{\max_{1\le j\le 2n}\Bigg|\sum_{i=1}^j X_i\Bigg| > t\Bigg\}\le 16\,{\mathbf P}\Bigg\{\Bigg|\sum_{i=1}^n X_i\Bigg| > \frac{t}{3420}\Bigg\}. $$
Keywords: maximal inequality, exchangeable random variables.
Mots-clés : permutations
@article{TVP_2000_45_3_a14,
     author = {S. Levental},
     title = {A maximal inequality for real numbers with application to exchangeable random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {615--621},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a14/}
}
TY  - JOUR
AU  - S. Levental
TI  - A maximal inequality for real numbers with application to exchangeable random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2000
SP  - 615
EP  - 621
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a14/
LA  - en
ID  - TVP_2000_45_3_a14
ER  - 
%0 Journal Article
%A S. Levental
%T A maximal inequality for real numbers with application to exchangeable random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2000
%P 615-621
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a14/
%G en
%F TVP_2000_45_3_a14
S. Levental. A maximal inequality for real numbers with application to exchangeable random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 3, pp. 615-621. http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a14/