More on the Skitovich--Darmous theorem for finite Abelian groups
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 3, pp. 603-607
Voir la notice de l'article provenant de la source Math-Net.Ru
The following theorem is proved. Let $X$ be a finite Abelian group and $\xi_1, \xi_2$ be independent random variables with values in $X$ and with distributions $\mu_1, \mu_2$. Then the independence of the linear statistics $L_1=\alpha_1(\xi_1) + \alpha_2(\xi_2)$ and $L_2=\beta_1(\xi_1) + \beta_2(\xi_2)$, where $\alpha_j, \beta_j$ are automorphisms of the group $X$, implies that $\mu_1,\mu_2$ are idempotent distributions.
Keywords:
characterization of probability distributions, independence of linear statistics, finite Abelian group.
@article{TVP_2000_45_3_a12,
author = {G. M. Feldman},
title = {More on the {Skitovich--Darmous} theorem for finite {Abelian} groups},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {603--607},
publisher = {mathdoc},
volume = {45},
number = {3},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a12/}
}
G. M. Feldman. More on the Skitovich--Darmous theorem for finite Abelian groups. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 3, pp. 603-607. http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a12/