Large-deviation probabilities for one-dimensional Markov chains. Part 2: Prestationary distributions in the exponential case
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 3, pp. 437-468
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper continues investigations of [A. A. Borovkov and A. D. Korshunov, Theory Probab. Appl., 41 (1996), pp. 1–24]. We consider a time-homogeneous and asymptotically space-homogeneous Markov chain $\{X(n)\}$ that takes values on the real line and has increments possessing a finite exponential moment. The asymptotic behavior of the probability $\mathbf{P}\{X(n)\ge x\}$ is studied as $x\to\infty$ for fixed or growing values of time $n$. In particular, we extract the ranges of $n$ within which this probability is asymptotically equivalent to the tail of a stationary distribution $\pi(x)$ (the latter is studied in [A. A. Borovkov and A. D. Korshunov, Theory Probab. Appl., 41 (1996), pp. 1–24] and is detailed in section 27 of [A. A. Borovkov, Ergodicity and Stability of Stochastic Processes, Wiley, New York, 1998]).
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
Markov chain
Keywords: rough and exact asymptotic behavior of large-deviation probabilities, transition phenomena, invariant measure.
                    
                  
                
                
                Keywords: rough and exact asymptotic behavior of large-deviation probabilities, transition phenomena, invariant measure.
@article{TVP_2000_45_3_a1,
     author = {A. A. Borovkov and D. A. Korshunov},
     title = {Large-deviation probabilities for one-dimensional {Markov} chains. {Part} 2: {Prestationary} distributions in the exponential case},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {437--468},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a1/}
}
                      
                      
                    TY - JOUR AU - A. A. Borovkov AU - D. A. Korshunov TI - Large-deviation probabilities for one-dimensional Markov chains. Part 2: Prestationary distributions in the exponential case JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2000 SP - 437 EP - 468 VL - 45 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a1/ LA - ru ID - TVP_2000_45_3_a1 ER -
%0 Journal Article %A A. A. Borovkov %A D. A. Korshunov %T Large-deviation probabilities for one-dimensional Markov chains. Part 2: Prestationary distributions in the exponential case %J Teoriâ veroâtnostej i ee primeneniâ %D 2000 %P 437-468 %V 45 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a1/ %G ru %F TVP_2000_45_3_a1
A. A. Borovkov; D. A. Korshunov. Large-deviation probabilities for one-dimensional Markov chains. Part 2: Prestationary distributions in the exponential case. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 3, pp. 437-468. http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a1/
