A generalization of Khasminskii's theorem on the existence of invariant measures for locally integrable drifts
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 3, pp. 417-436

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A=(A^{ij})$ be a mapping with values in the space of the nonnegative symmetric operators on $\mathbf{R}^n$ and let $B=(B^i)$ be a Borel vector field on $\mathbf{R}^n$ such that $A$ is locally uniformly nondegenerate, $A^{ij}\in H^{p,1}_{\mathrm{loc}}(\mathbf{R}^n)$, $B^i\in L^p_{\mathrm{loc}}(\mathbf{R}^n)$, where $p>n$. We show that the existence of a Lyapunov function for the operator $L_{A,B}f=\sum A^{ij}\partial_{x_i}\partial_{x_j} f +\sum B^i\partial_{x_i}f$ is sufficient for the existence of a probability measure $\mu$ with a strictly positive continuous density in the class $H^{p,1}_{\mathrm{loc}}(\mathbf{R}^n)$ such that $\mu$ satisfies $L_{A,B}^{*}\mu =0$ in the weak sense and is an invariant measure for the diffusion with the generator $L_{A,B}$ on domain $C_0^\infty (\mathbf{R}^n)$. For arbitrary continuous nondegenerate $A$ and locally bounded $B$, we prove the existence of absolutely continuous solutions. An analogous generalization of Khasminskii's theorem is obtained for manifolds.
Keywords: invariant measure
Mots-clés : diffusion process.
@article{TVP_2000_45_3_a0,
     author = {V. I. Bogachev and M. R\"ockner},
     title = {A generalization of {Khasminskii's} theorem on the existence of invariant measures for locally integrable drifts},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {417--436},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a0/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - M. Röckner
TI  - A generalization of Khasminskii's theorem on the existence of invariant measures for locally integrable drifts
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2000
SP  - 417
EP  - 436
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a0/
LA  - ru
ID  - TVP_2000_45_3_a0
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A M. Röckner
%T A generalization of Khasminskii's theorem on the existence of invariant measures for locally integrable drifts
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2000
%P 417-436
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a0/
%G ru
%F TVP_2000_45_3_a0
V. I. Bogachev; M. Röckner. A generalization of Khasminskii's theorem on the existence of invariant measures for locally integrable drifts. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 3, pp. 417-436. http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a0/