A generalization of Khasminskii's theorem on the existence of invariant measures for locally integrable drifts
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 3, pp. 417-436
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A=(A^{ij})$ be a mapping with values in the space of the nonnegative symmetric operators on $\mathbf{R}^n$ and let $B=(B^i)$ be a Borel vector field on $\mathbf{R}^n$ such that $A$ is locally uniformly nondegenerate, $A^{ij}\in H^{p,1}_{\mathrm{loc}}(\mathbf{R}^n)$, $B^i\in L^p_{\mathrm{loc}}(\mathbf{R}^n)$, where $p>n$. We show that the existence of a Lyapunov function for the operator $L_{A,B}f=\sum A^{ij}\partial_{x_i}\partial_{x_j} f +\sum B^i\partial_{x_i}f$ is sufficient for the existence of a probability measure $\mu$ with a strictly positive continuous density in the class $H^{p,1}_{\mathrm{loc}}(\mathbf{R}^n)$ such that $\mu$ satisfies $L_{A,B}^{*}\mu =0$ in the weak sense and is an invariant measure for the diffusion with the generator $L_{A,B}$ on domain $C_0^\infty (\mathbf{R}^n)$. For arbitrary continuous nondegenerate $A$ and locally bounded $B$, we prove the existence of absolutely continuous solutions. An analogous generalization of Khasminskii's theorem is obtained for manifolds.
Keywords:
invariant measure
Mots-clés : diffusion process.
Mots-clés : diffusion process.
@article{TVP_2000_45_3_a0,
author = {V. I. Bogachev and M. R\"ockner},
title = {A generalization of {Khasminskii's} theorem on the existence of invariant measures for locally integrable drifts},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {417--436},
publisher = {mathdoc},
volume = {45},
number = {3},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a0/}
}
TY - JOUR AU - V. I. Bogachev AU - M. Röckner TI - A generalization of Khasminskii's theorem on the existence of invariant measures for locally integrable drifts JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2000 SP - 417 EP - 436 VL - 45 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a0/ LA - ru ID - TVP_2000_45_3_a0 ER -
%0 Journal Article %A V. I. Bogachev %A M. Röckner %T A generalization of Khasminskii's theorem on the existence of invariant measures for locally integrable drifts %J Teoriâ veroâtnostej i ee primeneniâ %D 2000 %P 417-436 %V 45 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a0/ %G ru %F TVP_2000_45_3_a0
V. I. Bogachev; M. Röckner. A generalization of Khasminskii's theorem on the existence of invariant measures for locally integrable drifts. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 3, pp. 417-436. http://geodesic.mathdoc.fr/item/TVP_2000_45_3_a0/