Macrodimension: an invariant of local dynamics
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 2, pp. 368-374
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We define a Markov process on the set of countable graphs with spins. Transitions are local substitutions in the graph. It is proved that the scaling macrodimension is an invariant of such dynamics.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Markov process, macrodimension, invariant of dynamics.
                    
                  
                
                
                @article{TVP_2000_45_2_a9,
     author = {V. A. Malyshev},
     title = {Macrodimension: an invariant of local dynamics},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {368--374},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a9/}
}
                      
                      
                    V. A. Malyshev. Macrodimension: an invariant of local dynamics. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 2, pp. 368-374. http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a9/
