Macrodimension: an invariant of local dynamics
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 2, pp. 368-374
Cet article a éte moissonné depuis la source Math-Net.Ru
We define a Markov process on the set of countable graphs with spins. Transitions are local substitutions in the graph. It is proved that the scaling macrodimension is an invariant of such dynamics.
Keywords:
Markov process, macrodimension, invariant of dynamics.
@article{TVP_2000_45_2_a9,
author = {V. A. Malyshev},
title = {Macrodimension: an invariant of local dynamics},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {368--374},
year = {2000},
volume = {45},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a9/}
}
V. A. Malyshev. Macrodimension: an invariant of local dynamics. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 2, pp. 368-374. http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a9/