Ratio limit theorems for self-adjoint operators and symmetric Markov chains
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 2, pp. 268-288 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A simplest ratio limit theorem is obtained for self-adjoint operators in the spaces of L2 type which leave invariant a cone of nonnegative elements. By means of the theorem we establish ratio limit theorems for symmetric Markov chains and symmetric kernels in measurable spaces. In particular, it is shown that for symmetric Harris recurrent Markov chains a result is valid which is an analogue of the known Orey theorem (1961) about discrete recurrent symmetric chains. Similar statements are valid for nonnegative symmetric quasi-Feller kernels on locally compact spaces which are Liouville in a certain sense.
Keywords: ratio limit theorem, self-adjoint operator, Harris recurrent Markov chain, symmetric kernel
Mots-clés : quasi-Feller kernel, Liouville kernel.
@article{TVP_2000_45_2_a3,
     author = {M. G. Shur},
     title = {Ratio limit theorems for self-adjoint operators and symmetric {Markov} chains},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {268--288},
     year = {2000},
     volume = {45},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a3/}
}
TY  - JOUR
AU  - M. G. Shur
TI  - Ratio limit theorems for self-adjoint operators and symmetric Markov chains
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2000
SP  - 268
EP  - 288
VL  - 45
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a3/
LA  - ru
ID  - TVP_2000_45_2_a3
ER  - 
%0 Journal Article
%A M. G. Shur
%T Ratio limit theorems for self-adjoint operators and symmetric Markov chains
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2000
%P 268-288
%V 45
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a3/
%G ru
%F TVP_2000_45_2_a3
M. G. Shur. Ratio limit theorems for self-adjoint operators and symmetric Markov chains. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 2, pp. 268-288. http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a3/