Convergence of some integrals associated with Bessel processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 2, pp. 251-267
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the convergence of the Lebesgue integrals for the processes $f(\rho_t)$. Here, $(\rho_t,\,t\ge0)$ is the $\delta$-dimensional Bessel process started at $\rho_0\ge0$ and $f$ is a positive Borel function. The obtained results are applied to prove that two Bessel processes of different dimensions have singular distributions.
Keywords:
Bessel processes, Engelbert–Schmidt zero–one law, Brownian local time, regular continuous strong Markov processes, singularity of distributions.
@article{TVP_2000_45_2_a2,
author = {A. S. Cherny},
title = {Convergence of some integrals associated with {Bessel} processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {251--267},
year = {2000},
volume = {45},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a2/}
}
A. S. Cherny. Convergence of some integrals associated with Bessel processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 2, pp. 251-267. http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a2/