Convergence of some integrals associated with Bessel processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 2, pp. 251-267
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the convergence of the Lebesgue integrals for the processes $f(\rho_t)$. Here, $(\rho_t,\,t\ge0)$ is the $\delta$-dimensional Bessel process started at $\rho_0\ge0$ and $f$ is a positive Borel function. The obtained results are applied to prove that two Bessel processes of different dimensions have singular distributions.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Bessel processes, Engelbert–Schmidt zero–one law, Brownian local time, regular continuous strong Markov processes, singularity of distributions.
                    
                  
                
                
                @article{TVP_2000_45_2_a2,
     author = {A. S. Cherny},
     title = {Convergence of some integrals associated with {Bessel} processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {251--267},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a2/}
}
                      
                      
                    A. S. Cherny. Convergence of some integrals associated with Bessel processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 2, pp. 251-267. http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a2/
