On the Monge–Kantorovich duality theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 2, pp. 403-409 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Monge–Kantorovitch duality theorem has a variety of applications in probability theory, statistics, and mathematical economics. There has been extensive work to establish the duality theorem under general conditions. In this paper, by imposing a natural stability requirement on the Monge–Kantorovitch functional, we characterize the probability spaces (called strong duality spaces) which ensure the validity of the duality theorem. We prove that strong duality is equivalent to each one of (i) extension property, (ii) projection property, (iii) the charge extension property, and (iv) perfectness. The resulting characterization enables us to derive many useful properties that such spaces inherit from being perfect.
Keywords: duality theorem, marginals, perfect measure, charge extension, Marczewski function.
@article{TVP_2000_45_2_a14,
     author = {D. Ramachandran and L. R\"uschendorf},
     title = {On the {Monge{\textendash}Kantorovich} duality theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {403--409},
     year = {2000},
     volume = {45},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a14/}
}
TY  - JOUR
AU  - D. Ramachandran
AU  - L. Rüschendorf
TI  - On the Monge–Kantorovich duality theorem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2000
SP  - 403
EP  - 409
VL  - 45
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a14/
LA  - en
ID  - TVP_2000_45_2_a14
ER  - 
%0 Journal Article
%A D. Ramachandran
%A L. Rüschendorf
%T On the Monge–Kantorovich duality theorem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2000
%P 403-409
%V 45
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a14/
%G en
%F TVP_2000_45_2_a14
D. Ramachandran; L. Rüschendorf. On the Monge–Kantorovich duality theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 2, pp. 403-409. http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a14/