Estimates for the Syracuse problem via a~probabilistic model
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 2, pp. 386-395
Voir la notice de l'article provenant de la source Math-Net.Ru
We employ a simple stochastic model for the Syracuse problem (also known as the $(3x+ 1)$ problem) to get estimates for the average behavior of the trajectories of the original deterministic dynamical system. The use of the model is supported not only by certain similarities between the governing rules in the systems, but also by a qualitative estimate of the rate of approximation. From the model, we derive explicit formulae for the asymptotic densities of some sets of interest for the original sequence. We also approximate the asymptotic distributions for the stopping times (times until absorption in the only known cycle $\{1,2\}$) of the original system and give numerical illustrations of our results.
Keywords:
Syracuse problem, dynamical system, random walk.
@article{TVP_2000_45_2_a12,
author = {K. A. Borovkov and D. Pfeifer},
title = {Estimates for the {Syracuse} problem via a~probabilistic model},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {386--395},
publisher = {mathdoc},
volume = {45},
number = {2},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a12/}
}
TY - JOUR AU - K. A. Borovkov AU - D. Pfeifer TI - Estimates for the Syracuse problem via a~probabilistic model JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2000 SP - 386 EP - 395 VL - 45 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a12/ LA - en ID - TVP_2000_45_2_a12 ER -
K. A. Borovkov; D. Pfeifer. Estimates for the Syracuse problem via a~probabilistic model. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 2, pp. 386-395. http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a12/