Estimates for the Syracuse problem via a probabilistic model
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 2, pp. 386-395 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We employ a simple stochastic model for the Syracuse problem (also known as the $(3x+ 1)$ problem) to get estimates for the average behavior of the trajectories of the original deterministic dynamical system. The use of the model is supported not only by certain similarities between the governing rules in the systems, but also by a qualitative estimate of the rate of approximation. From the model, we derive explicit formulae for the asymptotic densities of some sets of interest for the original sequence. We also approximate the asymptotic distributions for the stopping times (times until absorption in the only known cycle $\{1,2\}$) of the original system and give numerical illustrations of our results.
Keywords: Syracuse problem, dynamical system, random walk.
@article{TVP_2000_45_2_a12,
     author = {K. A. Borovkov and D. Pfeifer},
     title = {Estimates for the {Syracuse} problem via a~probabilistic model},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {386--395},
     year = {2000},
     volume = {45},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a12/}
}
TY  - JOUR
AU  - K. A. Borovkov
AU  - D. Pfeifer
TI  - Estimates for the Syracuse problem via a probabilistic model
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2000
SP  - 386
EP  - 395
VL  - 45
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a12/
LA  - en
ID  - TVP_2000_45_2_a12
ER  - 
%0 Journal Article
%A K. A. Borovkov
%A D. Pfeifer
%T Estimates for the Syracuse problem via a probabilistic model
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2000
%P 386-395
%V 45
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a12/
%G en
%F TVP_2000_45_2_a12
K. A. Borovkov; D. Pfeifer. Estimates for the Syracuse problem via a probabilistic model. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 2, pp. 386-395. http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a12/