On a maximum of stable Lévy processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 2, pp. 380-386
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $G$ and $S$ be the location and the maximal value of a stable Lévy process $X$ on an interval $[0,a]$. It is shown that the dimensionless $S/G^h$, where h is the self-similarity parameter of $X$, is independent of $G$. This fact allows us to analyze $G$ for the trajectories of $X$ with high and low maxima.
Keywords:
extremal values, self-similar processes.
Mots-clés : Lévy processes
Mots-clés : Lévy processes
@article{TVP_2000_45_2_a11,
author = {G. M. Molchan},
title = {On a maximum of stable {L\'evy} processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {380--386},
year = {2000},
volume = {45},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a11/}
}
G. M. Molchan. On a maximum of stable Lévy processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 2, pp. 380-386. http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a11/