On a maximum of stable L\'evy processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 2, pp. 380-386

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ and $S$ be the location and the maximal value of a stable Lévy process $X$ on an interval $[0,a]$. It is shown that the dimensionless $S/G^h$, where h is the self-similarity parameter of $X$, is independent of $G$. This fact allows us to analyze $G$ for the trajectories of $X$ with high and low maxima.
Keywords: extremal values, Lévy processes, self-similar processes.
@article{TVP_2000_45_2_a11,
     author = {G. M. Molchan},
     title = {On a maximum of stable {L\'evy} processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {380--386},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a11/}
}
TY  - JOUR
AU  - G. M. Molchan
TI  - On a maximum of stable L\'evy processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2000
SP  - 380
EP  - 386
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a11/
LA  - ru
ID  - TVP_2000_45_2_a11
ER  - 
%0 Journal Article
%A G. M. Molchan
%T On a maximum of stable L\'evy processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2000
%P 380-386
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a11/
%G ru
%F TVP_2000_45_2_a11
G. M. Molchan. On a maximum of stable L\'evy processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 2, pp. 380-386. http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a11/