Multivariate rank correlations: a Gaussian field on a direct product of spheres
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 2, pp. 236-250
Cet article a éte moissonné depuis la source Math-Net.Ru
An asymptotic decision rule of testing for the independence of components of a random vector is suggested. The rule is based on ranking of linear coordinates of observations and on application of Roy's “union-intersection principle”.
Keywords:
multivariate sample ranks, Kendall's tau, weak convergence.
@article{TVP_2000_45_2_a1,
author = {V. I. Piterbarg and Yu. N. Tyurin},
title = {Multivariate rank correlations: a {Gaussian} field on a direct product of spheres},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {236--250},
year = {2000},
volume = {45},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a1/}
}
TY - JOUR AU - V. I. Piterbarg AU - Yu. N. Tyurin TI - Multivariate rank correlations: a Gaussian field on a direct product of spheres JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2000 SP - 236 EP - 250 VL - 45 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a1/ LA - ru ID - TVP_2000_45_2_a1 ER -
V. I. Piterbarg; Yu. N. Tyurin. Multivariate rank correlations: a Gaussian field on a direct product of spheres. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 2, pp. 236-250. http://geodesic.mathdoc.fr/item/TVP_2000_45_2_a1/