A random walk with a skip-free component and the Lagrange inversion formula
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 1, pp. 166-175

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper shows that for a random walk with a skip-free component, distributions of certain first passage times and hitting points are infinitely divisible. The proofs are elementary and based on an algebraic approach to the classical Lagrange formula. This approach permits us to write explicitly the respective Levy measures.
Mots-clés : Lagrange inversion formula
Keywords: Heisenberg–Weyl algebra, infinitely divisible distributions, skip-free random walks.
@article{TVP_2000_45_1_a8,
     author = {O. V. Viskov},
     title = {A random walk with a skip-free component and the {Lagrange} inversion formula},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {166--175},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_1_a8/}
}
TY  - JOUR
AU  - O. V. Viskov
TI  - A random walk with a skip-free component and the Lagrange inversion formula
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2000
SP  - 166
EP  - 175
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2000_45_1_a8/
LA  - ru
ID  - TVP_2000_45_1_a8
ER  - 
%0 Journal Article
%A O. V. Viskov
%T A random walk with a skip-free component and the Lagrange inversion formula
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2000
%P 166-175
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2000_45_1_a8/
%G ru
%F TVP_2000_45_1_a8
O. V. Viskov. A random walk with a skip-free component and the Lagrange inversion formula. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 1, pp. 166-175. http://geodesic.mathdoc.fr/item/TVP_2000_45_1_a8/