Approximation of laws of random probabilities by mixtures of Dirichlet distributions with applications to nonparametric Bayesian inference
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 1, pp. 103-124
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the general setting of nonparametric Bayesian inference, when observations are exchangeable and take values in a Polish space $X$, priors are approximated (in the Prokhorov metric) with any degree of precision by explicitly constructed mixtures of the distributions of Dirichlet processes. It is shown that if these mixtures ${\mathcal P}_{n}$ converge weakly to a given prior $\mathcal P$, the posteriors derived from ${\mathcal P}_{n}$'s converge weakly to the posterior deduced from $\mathcal P$. The error of approximation is estimated under some further assumptions. These results are applied to obtain a method for eliciting prior beliefs and to approximate both the predictive distribution (in the variational metric) and the posterior distribution function of $\int \psi d\widetilde{p}$ (in the Lévy metric), where $\widetilde p$ is a random probability having distribution $\mathcal P$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
approximation of priors and posteriors, Dirichlet distributions, Dirichlet processes, elicitation of prior beliefs, Lévy metric, Prokhorov metric, random measures.
                    
                  
                
                
                @article{TVP_2000_45_1_a4,
     author = {E. Regazzini and V. V. Sazonov},
     title = {Approximation of laws of random probabilities by mixtures of {Dirichlet} distributions with applications to nonparametric {Bayesian} inference},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {103--124},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_1_a4/}
}
                      
                      
                    TY - JOUR AU - E. Regazzini AU - V. V. Sazonov TI - Approximation of laws of random probabilities by mixtures of Dirichlet distributions with applications to nonparametric Bayesian inference JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2000 SP - 103 EP - 124 VL - 45 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2000_45_1_a4/ LA - ru ID - TVP_2000_45_1_a4 ER -
%0 Journal Article %A E. Regazzini %A V. V. Sazonov %T Approximation of laws of random probabilities by mixtures of Dirichlet distributions with applications to nonparametric Bayesian inference %J Teoriâ veroâtnostej i ee primeneniâ %D 2000 %P 103-124 %V 45 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2000_45_1_a4/ %G ru %F TVP_2000_45_1_a4
E. Regazzini; V. V. Sazonov. Approximation of laws of random probabilities by mixtures of Dirichlet distributions with applications to nonparametric Bayesian inference. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 1, pp. 103-124. http://geodesic.mathdoc.fr/item/TVP_2000_45_1_a4/
