The asymptotic behavior of the Pearson statistic
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 1, pp. 73-102
Cet article a éte moissonné depuis la source Math-Net.Ru
Some limit theorems are proved for some functionals of the Pearson statistic constructed from the polynomial distribution with parameters $n$ and $p_k$, $k=1,2,\dots$, $s=s(n)$, under the assumption that $\inf_{n}\{n\min_{1\le k\le s}p_k\}>0$, $s\to \infty$, $n\min\{p_k: k\in W_n\}\longrightarrow \infty$, $N_n/s\to 1$ as $n\to \infty$, where $N_n$ is the number of elements in the set $W_n\subset \{1,2,\dots ,s\}$. In particular, multivariate and functional limit theorems are proved for this statistic. As a whole, the statements proved in this paper demonstrate that the Pearson statistic in many respects behaves as an asymptotically normal sum of independent random variables.
Keywords:
Pearson statistic, chi-square statistic, random broken lines
Mots-clés : polynomial distribution.
Mots-clés : polynomial distribution.
@article{TVP_2000_45_1_a3,
author = {V. M. Kruglov},
title = {The asymptotic behavior of the {Pearson} statistic},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {73--102},
year = {2000},
volume = {45},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_1_a3/}
}
V. M. Kruglov. The asymptotic behavior of the Pearson statistic. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 1, pp. 73-102. http://geodesic.mathdoc.fr/item/TVP_2000_45_1_a3/