Unconditional convergence of Gaussian random series in Banach spaces
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 1, pp. 178-182
Voir la notice de l'article provenant de la source Math-Net.Ru
A sufficient condition is given for the a.s. unconditional convergence of Gaussian series in Banach spaces with unconditional bases not containing $l^n_\infty$'s uniformly. By the a.s. unconditional convergence of random series we understand the convergence of all rearrangements of the series on the same set of total probability.
Keywords:
a.s. unconditional convergence, Gaussian series, Banach spaces, not containing $l^n_\infty$'s uniformly.
@article{TVP_2000_45_1_a10,
author = {V. V. Kvaratskheliya},
title = {Unconditional convergence of {Gaussian} random series in {Banach} spaces},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {178--182},
publisher = {mathdoc},
volume = {45},
number = {1},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_1_a10/}
}
V. V. Kvaratskheliya. Unconditional convergence of Gaussian random series in Banach spaces. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 1, pp. 178-182. http://geodesic.mathdoc.fr/item/TVP_2000_45_1_a10/