Integro-local limit theorems including large deviations for sums of random vectors. II
Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 1, pp. 5-29
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper is a continuation of [A. A. Borovkov and A. A. Mogulskii, Theory Probab. Appl., 43 (1998), pp. 1–12] and [A. A. Borovkov and A. A. Mogulskii, Siberian Math. J., 37 (1996), pp. 647–682]. Let $S(n)=\xi(1)+\cdots +\xi(n)$ be the sum of independent nondegenerate random vectors in $\mathbf{R}^d$ having the same distribution as a random vector $\xi$. It is assumed that $\varphi(\lambda)= \mathbf{E} \,e^{\langle\lambda,\xi\rangle}$ is finite in a vicinity of a point ${\lambda \in \mathbf{R}^d}$. We obtain asymptotic representations for the probability $\mathbf{P}\{S(n)\in \Delta (x)\}$ and the renewal function $H(\Delta (x))= \sum_{n=1}^{\infty}\mathbf{P}\{S(n)\in \Delta (x)\}$, where $\Delta(x)$ is a cube in $\mathbf{R}^d$ with a vertex at point $x$ and the edge length $\Delta$. In contrast to the above-mentioned papers, the obtained results are valid, in essence, either without any additional assumptions or under very weak restrictions.
Keywords:
large deviations, rate function, renewal function, integro-local theorem, arithmetic distribution, lattice distribution, nonlattice distribution.
@article{TVP_2000_45_1_a0,
author = {A. A. Borovkov and A. A. Mogul'skii},
title = {Integro-local limit theorems including large deviations for sums of random {vectors.~II}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {5--29},
year = {2000},
volume = {45},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2000_45_1_a0/}
}
TY - JOUR AU - A. A. Borovkov AU - A. A. Mogul'skii TI - Integro-local limit theorems including large deviations for sums of random vectors. II JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2000 SP - 5 EP - 29 VL - 45 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2000_45_1_a0/ LA - ru ID - TVP_2000_45_1_a0 ER -
A. A. Borovkov; A. A. Mogul'skii. Integro-local limit theorems including large deviations for sums of random vectors. II. Teoriâ veroâtnostej i ee primeneniâ, Tome 45 (2000) no. 1, pp. 5-29. http://geodesic.mathdoc.fr/item/TVP_2000_45_1_a0/