On the law of the iterated logarithm in Banach lattices
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 4, pp. 865-874
Cet article a éte moissonné depuis la source Math-Net.Ru
The law of the iterated logarithm in the classical form $$ \limsup_{n\to\infty}\frac{X_1+X_2+\cdots+X_n}{(2n\log\log(n))^{1/2}}=\mathfrak{G} X $$ is established for some Banach lattices.
Keywords:
independent random elements, Banach lattices, the law of the iterated logarithm.
@article{TVP_1999_44_4_a9,
author = {I. K. Matsak},
title = {On the law of the iterated logarithm in {Banach} lattices},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {865--874},
year = {1999},
volume = {44},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_4_a9/}
}
I. K. Matsak. On the law of the iterated logarithm in Banach lattices. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 4, pp. 865-874. http://geodesic.mathdoc.fr/item/TVP_1999_44_4_a9/