On the law of the iterated logarithm in Banach lattices
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 4, pp. 865-874 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The law of the iterated logarithm in the classical form $$ \limsup_{n\to\infty}\frac{X_1+X_2+\cdots+X_n}{(2n\log\log(n))^{1/2}}=\mathfrak{G} X $$ is established for some Banach lattices.
Keywords: independent random elements, Banach lattices, the law of the iterated logarithm.
@article{TVP_1999_44_4_a9,
     author = {I. K. Matsak},
     title = {On the law of the iterated logarithm in {Banach} lattices},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {865--874},
     year = {1999},
     volume = {44},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_4_a9/}
}
TY  - JOUR
AU  - I. K. Matsak
TI  - On the law of the iterated logarithm in Banach lattices
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1999
SP  - 865
EP  - 874
VL  - 44
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_1999_44_4_a9/
LA  - ru
ID  - TVP_1999_44_4_a9
ER  - 
%0 Journal Article
%A I. K. Matsak
%T On the law of the iterated logarithm in Banach lattices
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1999
%P 865-874
%V 44
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_1999_44_4_a9/
%G ru
%F TVP_1999_44_4_a9
I. K. Matsak. On the law of the iterated logarithm in Banach lattices. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 4, pp. 865-874. http://geodesic.mathdoc.fr/item/TVP_1999_44_4_a9/