Asymptotic efficiency of inverse estimators
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 4, pp. 826-844
Cet article a éte moissonné depuis la source Math-Net.Ru
Inverse estimation concerns the recovery of an unknown input signal from blurred observations on a known transformation of that signal. The estimators considered in this paper are based on a regularized inverse of the transformation involved, employing a Hilbert space set-up. We focus on properties related to weak convergence. It is shown that linear functionals can be efficiently estimated in the Hájek–LeCam sense, provided they remain restricted to a suitable class. Outside this class, rates different from $\sqrt{n}$ are possible. By way of an example we present the ‘`convolution theorem’ for a deconvolution.
Keywords:
weak convergence, asymptotic efficiency
Mots-clés : inverse estimation, Hájek–LeCam convolution theorem.
Mots-clés : inverse estimation, Hájek–LeCam convolution theorem.
@article{TVP_1999_44_4_a5,
author = {A. C. M. Van Rooij and F. H. Ruymgaart and W. R. Van Zwet},
title = {Asymptotic efficiency of inverse estimators},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {826--844},
year = {1999},
volume = {44},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_4_a5/}
}
A. C. M. Van Rooij; F. H. Ruymgaart; W. R. Van Zwet. Asymptotic efficiency of inverse estimators. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 4, pp. 826-844. http://geodesic.mathdoc.fr/item/TVP_1999_44_4_a5/