Entropy numbers of some ergodic averages
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 4, pp. 776-795
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we extend a recent remarkable covering numbers estimate for averages of contractions in a Hilbert space $H$ due to Talagrand to some moving averages of contractions. By introducing a second regularization in Talagrand's spectral regularization, we find mild conditions on the spectral measure associated to any $x\in H$, allowing estimation of the number of Hilbertian balls of radius $0 \varepsilon\le 1$, enough to cover the subset of $H$ defined by $\{B_n(x)=n^{-1}\sum_{j=n^2}^{n^2+n-1}U^jx,n\in\mathcal{N}\}$, where $U$ is a contraction of $H$ and $\mathcal{N}$ a geometric sequence. Moreover, we show that these conditions on the spectral measure ensure the existence of the modulus of continuity of $\{T^{-1}\int_0^Tf\circ U_t dt,T\ge1\}$, where $f$ is a contraction of $L^2(\mu)$ and $\{U_t,t\in\mathbb{R}\}$ is a flow which preserves the measure $\mu$. Finally, we give a covering numbers estimate in a non-Hilbertian case.
Keywords:
spectral lemma, ergodic averages, entropy numbers.
@article{TVP_1999_44_4_a3,
author = {C. Gamet and M. Weber},
title = {Entropy numbers of some ergodic averages},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {776--795},
publisher = {mathdoc},
volume = {44},
number = {4},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_4_a3/}
}
C. Gamet; M. Weber. Entropy numbers of some ergodic averages. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 4, pp. 776-795. http://geodesic.mathdoc.fr/item/TVP_1999_44_4_a3/