Exit laws and excessive functions for superprocesses
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 4, pp. 880-885
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\xi$ be a Markov process with transition function $p(r,x;t,dy)$ and let $X$ be the corresponding Dawson–Watanabe superprocess (i.e., the superprocess with the branching characteristic $\psi(u)=\gamma u^2$). Denote by $\mathcal P$ the transition function of $X$ and put $$ p_n(r,x;t,dy)=\prod_{i=1}^np(r,x_i;t,dy_i), $$ To every $p_n$-exit law $\ell$ there corresponds a $\mathcal P$-exit law $L_\ell$ such that, for every $t$, $L_\ell^t(\mu)$ is a polynomial of degree $n$ in $\mu$ with the leading term $\langle \ell^t,\mu^n\rangle $. Every polynomial $\mathcal P$-exit law has a unique representation of the form $L_{\ell_1}+\cdots+L_{\ell_n}$, where $\ell_k$ is a $p_k$-exit law.
Keywords:
Markov process, Dawson–Watanabe superprocess, polynomial $\mathcal{P}$-exit law.
@article{TVP_1999_44_4_a11,
author = {E. B. Dynkin},
title = {Exit laws and excessive functions for superprocesses},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {880--885},
year = {1999},
volume = {44},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_4_a11/}
}
E. B. Dynkin. Exit laws and excessive functions for superprocesses. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 4, pp. 880-885. http://geodesic.mathdoc.fr/item/TVP_1999_44_4_a11/