Diffusion approximation and optimal stochastic control
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 4, pp. 705-737
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper a stochastic control model is studied that admits a diffusion approximation. In the prelimit model the disturbances are given by noise processes of various types: additive stationary noise, rapidly oscillating processes, and discontinuous processes with large intensity for jumps of small size. We show that a feedback control that satisfies a Lipschitz condition and is $\delta$-optimal for the limit model remains $\delta$-optimal also in the prelimit model. The method of proof uses the technique of weak convergence of stochastic processes. The result that is obtained extends a previous work by the authors, where the limit model is deterministic.
Keywords:
stochastic control, stochastic differential equations, weak convergence, asymptotic optimality.
@article{TVP_1999_44_4_a0,
author = {R. Liptser and W. J. Runggaldier and M. I. Taksar},
title = {Diffusion approximation and optimal stochastic control},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {705--737},
publisher = {mathdoc},
volume = {44},
number = {4},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_4_a0/}
}
TY - JOUR AU - R. Liptser AU - W. J. Runggaldier AU - M. I. Taksar TI - Diffusion approximation and optimal stochastic control JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1999 SP - 705 EP - 737 VL - 44 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1999_44_4_a0/ LA - ru ID - TVP_1999_44_4_a0 ER -
R. Liptser; W. J. Runggaldier; M. I. Taksar. Diffusion approximation and optimal stochastic control. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 4, pp. 705-737. http://geodesic.mathdoc.fr/item/TVP_1999_44_4_a0/