Limit theorems for maxima of independent random sums
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 3, pp. 631-633

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider extrema of the form $$ Y_{mn}=\max\limits_{1\le i\le m}\sum^n_{j=1}X_{ij},\quad m,n\ge 1, $$ where $X_{ij}$, $i,j\ge 1$, are independent identically distributed random variables. An asymptotic behavior of $Y_{mn}$ as ${m,n\to\infty}$ is investigated. In particular, the paper shows when the asymptotic behavior of $Y_{mn}$ coincides with the asymptotics of maxima of normally distributed variables under some linear normalizing.
Mots-clés : maxima
Keywords: random sums, limit theorems, asymptotic normality, Edgeworth expansion, matrix norms.
@article{TVP_1999_44_3_a7,
     author = {A. V. Lebedev},
     title = {Limit theorems for maxima of independent random sums},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {631--633},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_3_a7/}
}
TY  - JOUR
AU  - A. V. Lebedev
TI  - Limit theorems for maxima of independent random sums
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1999
SP  - 631
EP  - 633
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1999_44_3_a7/
LA  - ru
ID  - TVP_1999_44_3_a7
ER  - 
%0 Journal Article
%A A. V. Lebedev
%T Limit theorems for maxima of independent random sums
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1999
%P 631-633
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1999_44_3_a7/
%G ru
%F TVP_1999_44_3_a7
A. V. Lebedev. Limit theorems for maxima of independent random sums. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 3, pp. 631-633. http://geodesic.mathdoc.fr/item/TVP_1999_44_3_a7/